
Veranstalter:

Speziell zu Software-Testing

14.-15. Februar 2011, München

Testen in der Cloud

Altbekanntes oder neue
Herausforderungen?

Abstract

Wenn man Marktforschungsunternehmen glaubt, wird der Trend in der IT in den nächsten Jahren Cloud
Computing sein. Microsoft bietet mit der Windows Azure Plattform eine Cloud-Umgebung, die sich ideal für
Anwendungen auf der Technologie des Konzerns aus Redmond eignet. In dieser Session stellt Rainer Stropek
dar, welche neuen Herausforderungen hinsichtlich Testen bei Einbeziehung von Cloud Computing,
insbesondere Windows Azure, zu meistern sind. Er zeigt, welche Möglichkeiten zur Testautomatisierung bereit
stehen und diskutiert auch die kaufmännischen Aspekte, die sich aus dem Pay-per-use Modell von Cloud
Computing für Test- und Entwicklungsumgebungen ergeben.

According to market research organizations like Gartner or IDC cloud computing will be a big trend over the
next years. With the Windows Azure Platform Microsoft offers a cloud computing environment that is perfectly
suited for applications that are based on technologies like .NET or SQL Server. In this session Rainer Stropek
discusses how using the cloud – especially Windows Azure – changes software testing. He shows possibilities
for test automation and also covers pricing aspects with regards to test and development environments.

Introduction

• software architects gmbh

• Rainer Stropek

– Developer, Speaker, Trainer

– MVP for Windows Azure

– rainer@timecockpit.com

– @rstropek

http://www.timecockpit.com

http://www.software-architects.com

http://www.software-architects.com/
http://www.software-architects.com/
http://www.software-architects.com/
http://www.software-architects.com/
mailto:rainer@timecockpit.com
http://www.timecockpit.com/
http://www.software-architects.com/
http://www.software-architects.com/
http://www.software-architects.com/

Introduction

Testing for the cloud – similarities
and differences

Similarities and Differences

• Similarities

– Just another .NET application

– Just another Windows Server

– Just another IIS

– Just another SQL Server

Similarities and Differences

• Differences

– Design, develop and test for clusters

– Handle failures (i.e. failover)

– Design, develop and test for scalability

– Use the elastic nature of the cloud

Similarities and Differences

• Side topics

– Cloud enables new tools for testing

• E.g. LoadStorm

– SLAs become more and more important

• Who monitors the cloud?

http://loadstorm.com/

On-Premise Cloud Emulators

DevFabric and DevStorage

DevFabric Introduction

• Windows Azure Compute Emulator aka DevFabric
– Part of Windows Azure SDK  free

• Simulates Windows Azure during development process
– For debugging purposes

– To lower costs

– For offline scenarios

• DevFabric ≠ Windows Azure
– Can access all locally installed resources

– Might not be available in the real cloud

– DevFabric does not mitigate testing in the real cloud

http://msdn.microsoft.com/en-us/windowsazure/cc974146

DevFabric Introduction

• Prerequisites
– Windows Azure SDK and Azure Tools for VS

– Visual Studio 2010

– IIS and SQL Server 2008 R2 (see also MSDN)

• Installation
– Install SDK and tools

– Configure DevFabric (see also MSDN)

– Configure DevStorage (see later)

• DevFabric and DevStorage only support local use
– Tip: Various articles about how to access DevFabric and DevStorage

over the network are available (e.g. Emmanuel's Blog)

http://msdn.microsoft.com/en-us/windowsazure/cc974146
http://msdn.microsoft.com/en-us/library/gg433136.aspx
http://msdn.microsoft.com/en-us/library/gg433131.aspx
http://blog.ehuna.org/2009/10/an_easier_way_to_access_the_wi.html

Debugging With DevFabric

• Demo DevFabric in Visual Studio

– F5-Experience

Profiling With DevFabric

• Most of today‘s leading profiler tools (e.g. ANTS
Profiler) do not support applications running in
DevFabric

– Example of a working profiler: YourKit Profiler for .NET
(with limitations)

• Tip: Build apps that run with and without
DevFabric/Cloud
– RoleEnvironment.IsAvailable

http://www.yourkit.com/

Automating DevFabric
 Windows Azure SDK Deployment Tools

• CSPack.exe

– Pack binaries for DevFabric or Azure deployment

– Typically done by Visual Studio

• CSRun.exe

– Deploys package to DevFabric and runs it

– Typically done by Visual Studio

– Tip: Testers can use CSRun to run an app without Visual Studio and
sourcecode

• CSUpload.exe – Uploads VHDs to Azure

• CSManage.exe

– Sample that shows how to automate Azure Service Management

http://msdn.microsoft.com/en-us/library/gg432988.aspx
http://msdn.microsoft.com/en-us/library/gg433001.aspx
http://code.msdn.microsoft.com/windowsazuresamples

DevFabric and Unit Tests

Tips

– Encapsulate logic that has to be unit tested into
separate class libraries  testing as usual

– Include DevFabric in integration tests using
CSPack/CSRun

– Build applications and services that can be run
inside and outside of Azure

Storage in Azure

Blobs: large,
unstructured
data (audio,
video, etc)

Tables: simply
structured data,
accessed using
WCF Data
Services

Queues: serially
accessed messages
or requests, allowing
web-roles and worker-
roles to interact

Windows Azure Storage

• Windows Azure Storage Emulator aka DevStorage

– REST Services on http://127.0.0.1:1000 – 10002

– UseDevelopmentStorage=true

– Credentials and important tips see MSDN

• Storage Explorers

– Visual Studio Server Explorer

– 3rd party tools (e.g. Cerebrata)

DB

http://msdn.microsoft.com/en-us/library/gg433135.aspx
http://www.cerebrata.com/

SQL Azure

Replica 1

Replica 2

Replica 3

DB

Replica 4

!

SQL Azure

Application

Internet

LB

TDS (tcp)

TDS (tcp)

TDS (tcp)

Apps use standard SQL client

libraries: ODBC, ADO.Net, PHP, …

Load balancer forwards ‘sticky’

sessions to TDS protocol tier

Security Boundary

Gateway Gateway Gateway Gateway Gateway Gateway

Scalability and Availability: Fabric, Failover, Replication, and Load balancing

SQL SQL SQL SQL SQL SQL

Gateway: TDS protocol gateway, enforces AUTHN/AUTHZ policy; proxy to backend SQL

SQL Azure
Differences and Limitations

• Features
– Only RDBMS, no SQL Agent, SSIS, SSRS (already in beta) or SSAS

– No support for hardware-related features

– No distributed queries or transactions

• Protocol
– TDS 7.3 or later

– No OLE DB support

– Only TCP/IP protocol without MARS with encryption

• You need Management Studio 2008 R2

• Every table must have a clustered index

• Further details see MSDN Guidelines and Limitations (SQL Azure
Database)

http://msdn.microsoft.com/en-us/library/ff394102.aspx
http://msdn.microsoft.com/en-us/library/ff394102.aspx
http://msdn.microsoft.com/en-us/library/ff394102.aspx

DevStorage

• Demo

– DevStorage and Cloud storage with Cerebrata
Cloud Storage Studio and Visual Studio 2010

– SQL Azure with Management Studio 2008 R2

– Fiddler with DevStorage and Cloud Storage

Deployment

Moving your app into the cloud

Production and Staging
Environments

• Production environment
– http://<myapp>.cloudapp.net

• Staging environment
– http://<guid>.cloudapp.net

– Used for testing and preparation of new production
version

Deployment Types

• In-Place update
– Can be performed on prod and staging

– Service model must be identical (e.g. same number of roles)

• VIP Swap (Virtual IP Swap)
– Switches Prod ↔ Staging

– Service model may have changed; endpoints must have stayed the
same

Deployment in VS Authentication
using certificate

Deployment
using Azure Store

Deployment
process in VS

Deployment in VS

VIP Swap

• Prod contains Vx

• Deploy Vnext to Staging
– Connect staging to staging data stores

– Do final QS

– Connect staging to prod data stores

– Do final QS and warmup

• Perform VIP Swap, now Vnext is online

• Stop and delete staging

Troubleshooting

Hunting errors in the cloud using
RDP, Diagnostics and IntelliTrace

RDP vs. Diagnostics

On-Premise

• Static environment

• Well-known environment

• Single server

Cloud

• Dynamic environment

• Multi-instances, elastic

• Many nodes

RDP vs. Diagnostics

• Remote access via RDP

– During development

– Troubleshooting for specific instance
(e.g. memory or CPU consumption)

• Diagnostics

– Permanent

– Long-term statistics

– Monitor health of complete system

Remote Connection (RDP)
Certificate for

credential encryption

Credentials Don’t forget to
enable RDP!

Azure Diagnostics

Role

Role Instance

Diagnostic
Monitor

Configuration

Quota
enforcement

Local directory storage

Data collection
(traces, logs,
crash dumps)

Windows Data
Sources

IIS Logs & Failed Request Logs
Perf Counters

Windows Event Logs

Image Source: Microsoft PDC 09, Session SVC15, Matthew Kerner

Azure Diagnostics

Role

Role Instance

Diagnostic
Monitor

Local directory storage

Request upload

Windows
Azure

Storage

Scheduled or on-demand
upload

Windows Data
Sources

Image Source: Microsoft PDC 09, Session SVC15, Matthew Kerner

Remote
Diagnostics

config.

Diagnostics
aufsetzen

IntelliTrace in Azure

• Collect data about events that happened in Azure

• Open data in VS and see e.g. exceptions, call flow, etc.

• IntelliTrace data is collected in Windows Azure Storage

http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Blogs-Components-WeblogFiles/00-00-00-56-76-metablogapi/2671.image_5F00_12.png

Build Automation with Azure

• Automate deployment and run
unit tests in the cloud

Build Automation with Azure

• Goals

– Create a build process template for customization

– Build cspkg in Build Process

– Deploy to Azure using Azure Powershell Cmdlets

– Run Unit test against newly deployed service

– Remove Hosted Service

• Unless you have too much $

Pre-requisites

• Working Azure Solution

– WebRole with Service (ToUpper)

– Test Assembly

• Service Reference to Service

• Build Server with

– Azure Toolkit (tested with 1.3)

– Powershell

– Powershell Azure Cmdlets

• Azure Account

– Hosted Service for testing

– Certificate for Buildserver

– Certificate from Developer Machine

Instead of
User/Pwd

http://code.msdn.microsoft.com/azurecmdlets

Setting up certificates

• Why certificates?

– Allows you to store credentials in a secure place

– No passwords in source code

– Only way for Azure REST API

• Idea:

– Every machine allowed to access managment

• Creates and installs a new certificate in windows secure store

• Upload public key to azure management portal („Management Keys“)

• Login on machine with build account

– The account that runs the build agent

– Open visual studio shell

– Execute a command

• makecert -r -pe -a sha1 -n "CN=Build Machine Certificate" -ss My -len 2048 -sp "Microsoft
Enhanced RSA and AES Cryptographic Provider" -sy 24 buildmachine.cer

– This creates a public key, buildmachine.cer

– Upload buildmachine.cer to management portal

Setting up certificates

• Upload the certificate to Azure

– Browse to the folder with the cert

• Sidenotes:

– A cer file is not critical

– It is only a public key

– You don‘t want to loose it

– You can distribute it to anybody

– Authenticates the machine/account

Goal: Create a custom build
template

• Create a new build definition

– Team Explorer -> Builds -> New Build Definition

– Choose a build Controller

– Process

• Show details

• Choose „New“

• Select a new name

• New process templated created in

– „$TeamProject\BuildProcessTemplates\

Goal: Create a custom build
template

• Create a new blank Solution

• Add created Process Template XAML to it.

– Better to edit Process Template within a solution

– Especially true if creating custom activities

• We have our build definition for now

– Will customize it later to do azure deployment

Build Automation with Azure

• Goals

– Create a build process template for customization

– Build cspkg in Build Process

– Deploy to Azure using Azure Powershell Cmdlets

– Run Unit test against newly deployed service

– Remove Hosted Service

• Unless you have too much $

Goal: Building cspkg in Build
Process

• Microsoft.CloudService.targets
provides a „Publish“ target

– used by default for cloud projects

– call the target additionally to the normal build

• Creates the cspkg in the Publish folder

– Is automatically copied to Drop location

Goal: Building cspkg in Build
Process

• Edit the Build definition

• Go to „Process“ -> „Advanced“

• Edit MSBuild Arguments
– /t:Build;Publish

• Save the definition

Build Automation with Azure

• Goals

– Create a build process template for customization

– Build cspkg in Build Process

– Deploy to Azure using Azure Powershell Cmdlets

– Run Unit test against newly deployed service

– Remove Hosted Service

• Unless you have too much $

Goal: Deploying to Azure

• Powershell Cmdlets

– Provide scriptable access to Azure Management

– A wrapper for the Windows Azure REST API

– No magic calls

• You could use whatever to call the REST Service

• Cmdlets provide some helpers

• Uploading to blob store and creating a deployment is a
single call

– Free to use, on MS Code Gallery

Goal: Deploying to Azure

• We created a PS script that
– Creates a new deployment in staging

– Sets deployment to running

– Swaps with Production

– Waits till role is „Ready“

• Waiting till „Ready“ is crucial
– Follow-up unit tests would fail

• That script is checked in
– Checked-out during the build process and therefore executable

Goal: Deploying to Azure

certificatethumb subscriptionId servicename package config
$certTP = $args[0]
$cert = Get-Item cert:\CurrentUser\My\$certTP
$sub = $args[1]
$storageAccount = $args[2]
$servicename = $args[3]
$package = $args[4]
$config = $args[5]
$label = $args[6]
Add-PSSnapin AzureManagementToolsSnapIn

New-Deployment -serviceName $servicename -storageserviceName $storageAccount -subscriptionId $sub -
certificate $cert -slot 'Staging' -package $package -configuration $config -label $label | Get-OperationStatus -
WaitToComplete

Get-HostedService $servicename -Certificate $cert -SubscriptionId $sub |Get-Deployment -Slot 'Staging' |Set-
DeploymentStatus 'Running' |Get-OperationStatus -WaitToComplete
Get-Deployment staging -subscriptionId $sub -certificate $cert -serviceName $servicename | Move-Deployment | Get-
OperationStatus -WaitToComplete
Get-HostedService $servicename -Certificate $cert -SubscriptionId $sub |Get-Deployment -Slot 'Staging' |Set-
DeploymentStatus 'Suspended' |Get-OperationStatus -WaitToComplete
Get-HostedService $servicename -Certificate $cert -SubscriptionId $sub |Get-Deployment -Slot 'Staging' |Remove-
Deployment | Get-OperationStatus -WaitToComplete
Get-HostedService $servicename -Certificate $cert -SubscriptionId $sub |Get-Deployment -Slot 'Production' |Set-
DeploymentStatus 'Running' |Get-OperationStatus -WaitToComplete

$ready = $False
while(!$ready)
{
 $d = Get-HostedService $servicename -Certificate $cert -SubscriptionId $sub |Get-Deployment -Slot 'Production'
 $ready = ($d.RoleInstanceList[0].InstanceStatus -eq "Ready") -and ($d.Label -eq $label)
}

Goal: Deploying to Azure

• Executing the script in the Build Process
– Modify Build Process Template to execute the script

• Open the Build Template

• Navigate to
– Sequence
– Run On Agent

– Try Compile, Test and Associate Changesets and Work Items

– Sequence

– Compile, Test, and Associate Changesets and Work Items

– Try Compile and Test

– Compile and Test

– For Each Configuration in BuildSettings.PlatformConfigurations

– Compile and Test for Configuration

Goal: Deploying to Azure

You are Here!
;-)

Goal: Deploying to Azure

• This “Deploy to Azure” Sequence

• Finds the cscfg and cspkg files in the Publish directory
– Uses the FindMatchingFiles Activity provided by TFS

• Assigns the deployscript variable
– a local variable

• Invokes the powershell script

• Arguments passed to the script are

– SubscriptionID

– Certificate ThumbPrint (no password!)

– Service Name

– Blobstore to use

– Cscfg path

– Cspkg path

Goal: Deploying to Azure

• Where does it the following information from?
– AzureCertificateThumbPrint

– AzureSubscriptionID

– AzureStorageName

– AzureHostedServiceName

• Arguments to the WorkFlow Process!

Goal: Deploying to Azure

• Create Arguments

Goal: Deploying to Azure

• Edit the Build Process and fill in the blanks

• Where From ?
– Azure Portal!

– AzureStorageName – SomeBlobStorage name (you might have to create one first)

– AzureHostedServiceName – A newly created Hosted service (without any deployment)

Goal: Deploying to Azure

• Let‘s try it! – Queue a new build

Goal: Deploying to Azure

• Did the PS script wait till ready? – Yes

– It took about 11 minutes

Build Automation with Azure

• Goals

– Create a build process template for customization

– Build cspkg in Build Process

– Deploy to Azure using Azure Powershell Cmdlets

– Run Unit test against newly deployed service

– Remove Hosted Service

• Unless you have too much $

Goal: Run Unit test against
newly deployed service

• Unit test currently runs against a local service

• Change endpoint in test configuration

– Service name you chose(!)

• Start a new build

• Open build

Build Automation with Azure

• Goals

– Create a build process template for customization

– Build cspkg in Build Process

– Deploy to Azure using Azure Powershell Cmdlets

– Run Unit test against newly deployed service

– Remove Deployment

• Unless you have too much $

Goal: Remove Deployment

• After testing, service is still running

• We created a second PS script

– Suspends productive deployment

– Removes the deployment

– Executed after unit tests

Goal: Remove Deployment

certificatethumb subscriptionId servicename
$certTP = $args[0]
$cert = Get-Item cert:\CurrentUser\My\$certTP
$sub = $args[1]
$servicename = $args[2]
Add-PSSnapin AzureManagementToolsSnapIn

Get-HostedService $servicename -Certificate $cert -SubscriptionId $sub |
 Get-Deployment -Slot 'Production' |
 Set-DeploymentStatus 'Suspended' |
 Get-OperationStatus -WaitToComplete

 Remove-Deployment -Slot 'Production' -ServiceName $servicename -
SubscriptionId $sub -Certificate $cert |
 Get-OperationStatus -WaitToComplete

Build Automation with Azure

• Goals

– Create a build process template for customization

– Build cspkg in Build Process

– Deploy to Azure using Azure Powershell Cmdlets

– Run Unit test against newly deployed service

– Remove Deployment

• Unless you have too much $ (See next section)

Build Automation with Azure --
Summary

• Use Powershell Cmdlets for automation

– Very handy, no custom Activities

• Can be used for more

– Storage creation

• Make sure your azure role is „Ready“

– Followup activities might depend on it

• Finally, cleaning up after one-self saves money

Costs

Pay only those test resources that
you really need

Windows Azure Pricing

Virtual Machine instances
Load balancers, routers, etc.
Relational DB instances
Automated service management

- Fabric controller operations
Load balancer programming

COMPUTE

PRICE
$0.12 / hour per size unit

SQL Azure
PRICE

1GB db : $9.99/month
5 GB db: $49.95/month *
10 GB db : $99.99/month
50 GB db: $499.95/month *
Data transfers = $0.10 in / $0.15 out / GB

* Starting June 28, 2010

Easy to use
Reliable
Compatible with what you have

STORAGE

Blob Storage
Table Storage
Multiple replicas

PRICE
$0.15 / GB stored / month
Storage transactions: $0.01 /
10k

BANDWIDTH

Ingress/Egress (to/from
internet only)

PRICE
Bandwidth: $0.10 IN; $0.15
OUT; / GB

Windows Azure Pricing
Advantages

• Get a production-like test environment for very little
money

– Compute and storage cluster

• Keep test environment online only as long as you
need it

– Tip: Think about keeping test data in the cloud

• VIP Swap to put new releases into production

Veranstalter:

Speziell zu Software-Testing

14.-15. Februar 2011, München

FRAGEN?

Wir sehen uns wieder!

High-Level-Konferenz speziell zu C++

 05. – 06. Mai 2011, direkt am Chiemsee
 cpp.ADC2011.de

Trainings und Events der ppedv
Mehr als 100 verschiedene Trainings

auf Microsoft-Technologien spezialisiert

11 Standorte in D & AT

Maßgeschneiderte Trainings
direkt bei Ihnen vor Ort!

www.ppedv.de

http://www.cpp.adc2011.de/
http://www.ppedv.de/

Veranstalter:

Speziell zu Software-Testing

14.-15. Februar 2011, München

Hat Ihnen mein Vortrag gefallen?
Ich freue mich auf Ihr Feedback!

Veranstalter:

Speziell zu Software-Testing

14.-15. Februar 2011, München

Vielen Dank!
Rainer Stropek

